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Abstract

This paper examines the issue of implicit signaling of inexpressible type through
delegation. I examine a communication game with perfectly aligned preferences, two-
sided private information and communication frictions. The model is analyzed in the
context of medical decision-making. A patient (principal) comes to a doctor’s (agent’s)
office to choose one of two treatments that would suit his health needs. The patient
perfectly knows, but cannot communicate his preference type and may acquire some
informative, but imperfect and costly signal about his health. After observing the
signal, he may choose the treatment or delegate the decision to the doctor, who observes
the health perfectly. Even if the patient information acquisition and the signal are
unobservable to the doctor, the patient’s delegation choice, combined with the doctor’s
private information, allow the latter to extract some signal about the inexpressible
preference type. I show that for a large class of parameters there exists an equilibrium,
in which the doctor, basing on his information and the delegation decision can correctly
understand cues about preferences and tailor the final treatment to the patient’s needs.
In particular the doctor’s final decision (upon delegation) may be non-monotone in
health.

1 Introduction

How can one party pass some information to their partner without using direct communi-
cation? One way is to signal through choice of action. However, choosing not to act – here,
meaning delegation of authority – can also give the other party a signal about our private
information. Such ”indecisiveness” might turn out to be beneficial even if we are relatively
well informed about the decision-relevant variable.

I am especialy grateful to Paweł Gola and Matteo Foschi, who discussed early versions of the model; their
feedback was invaluable and I cannot thank them enough for their time and insight. I would like to thank for
valuable comments of Piero Gottardi, Andrea Mattozi, Andrea Galeotti, Wouter Dessein and the participants of
the seminars in the EUI, 2017 Ce2 Workshop and Warsaw Economic Seminar.
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In this paper, I examine a general principal–agent model in the context of medical
decision– making. In contrast to the existing literature, I assume the agent (doctor) to
be fully altruistic towards the principal (patient) – thus there is no intrinsic divergence
of preferences. However, players face a problem of two-sided private information and
difficulties in communicating their signal to the other party. Only the principal knows
his private preference parameter, while it is the agent who perfectly observes the state of
the world. The principal might privately obtain an informative but costly and imperfect
signal about the state and then either decide about the action or delegate the decision
to the agent. In the equilibrium, the agent correctly anticipates which principal types
choose to be informed and under what conditions they would further decide to delegate
authority, even though he observes nothing but the delegation decision. In particular, a
positive investment in a cheap informative signal is correctly anticipated to come from a
principal type that is not extreme. Moreover, the informed types delegate authority only if
their acquired signal is inconclusive. This fact, along with the agent’s knowledge of true
x, allows him to correctly guess the most likely range of types and, in turn, adjust his
choice of action to better tailor the principal needs. In other words, the principal implicitly
(and imperfectly) signals his type with delegation and the sophisticated agent is able to
understand the ”cue”. This results in a nontrivial equilibrium, in which the agent’s final
decision (upon delegation) is non-monotone in the state of the world.

The rest of the paper is structured as follows: first, I describe a motivating example
and place the framework within a specific type of principal-agent situation, namely a
relationship between a doctor and a patient. Then I briefly summarize links with the
broader literature on delegation, imperfect signals and language frictions. In the next
section, I introduce the model and present some early results.

Motivating example Consider a patient coming to the doctor’s office to discuss two
possible treatment options. The patient has some private preference about the two actions,
which may be interpreted as a decision cutoff; if his state of health x is below some t, he
prefers one treatment – say, a surgery – while if his state of health is above t, the other
treatment (say, drugs) is preferred. The information about t is a form of tacit knowledge,
which is difficult, or even impossible to express in terms of any language – an assumption
that may be considered reasonable in the case of medical preferences.

The patient may obtain a costly informative signal about the state of health. Neither
the investment in information nor the realization itself is observed by the doctor. After
observing the signal, the patient may choose the preferred treatment himself or delegate
the decision to the doctor, who, being an expert, observes x perfectly. I assume the doctor’s
utility coincides with the patient’s and there is no inherent divergence of preferences -
however, the exact value of t is known only to the patient, while the doctor has some prior
g(t).

Suppose the doctor ex-ante expects the patient types to be distributed uniformly, with
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half of the patients preferring a surgerical operation and the other half - a drug treatment.
If the patient was not allowed to acquire information and delegated the choice to the doctor,
the doctor would naturally choose surgery for x < 1

2 and drug treatment for x > 1
2 . The

altruistic doctor has no incentive to suggest surgery for any x > 1
2 . The situation changes,

however, if the patient is allowed to obtain an informative signal.
Consider a doctor who is encountered by a patient with relatively low x < 1

2 , i.e. an
indication for a surgery for an ex-ante average type t. The doctor believes the patient
might have obtained a signal which was informative. He therefore infers that an average
informed patient should know that surgery is his best choice. Yet, the patient still prefers to
delegate authority. The doctor might then correctly infer that the delegation decision is
more likely to come from a patient with low t, as types with t ≈ x find it most difficult to
make an informed decision.1. Thus, the doctor’s posterior belief about t becomes correctly
”biased”. Based on a belief, the doctor’s strategy would change as well – he is less likely to
recommend a = 0 whenever the decision is delegated and may suggest it only for lowest
states of x, while some patients with health x ∈ [x̄, 1

2 ] are prescribed a = 1. Since similar
reasoning applies to relatively high types (x > 1

2 ), the signaling–by– delegation leads to
an equilibrium in which the doctor’s choice is non-monotone in health; the patient with
worse health is prescribed a less aggressive treatment than the person with better health,
solely due to (correctly) signaled preferences.

We may imagine multiple situations in which the apparent ”indecisiveness” of the
patient does indeed provide a cue about his preferences. If a possibly well-informed patient
with a bacterial infection is uncertain whether he wants to be treated with antibiotics, the
doctor has a cue about the patient’s general dislike for antibiotic therapy, and would take
that into account when making the final decision. Similarly, if a physically healthy woman
with an uncomplicated pregnancy wants to discuss with her obstetrician a possibility of
cesarean section, the doctor might infer that his patient is particularly afraid of the risks of
natural birth and tailor his recommendation to the woman’s needs.

Related literature The model is connected to a few strands of literature. The first area is
a vast literature on delegation and its association with communication, in line with the
idea of Dessein (2002). However, while most of the delegation literature (see e.g. Li and
Suen (2004); Alonso and Matouschek (2008); Garfagnini, Ottaviani, and Sørensen (2014)
concentrate on strategic incentives with divergent preferences of the decision maker and the
expert(s), I focus solely on communication frictions and make a bit unpopular assumption
that the two parties share same preferences. This assumption, a bit similar to the one in
Dewatripont and Tirole (2005), not only allows me to examine information transmission in
isolation but also changes the players’ incentives. The players want to exchange as much
information as possible – both through direct communication and through signaling – but

1The delegation decision comes from a principal whose signal was inconclusive, like in Li and Suen (2004);
Garfagnini, Ottaviani, and Sørensen (2014)
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face language constraints in communication.
My setup is similar to Garfagnini, Ottaviani, and Sørensen (2014), with nondivergent

preferences. The main difference – which is also the main contribution of this paper – is
that Garfagnini, Ottaviani, and Sørensen (2014) consider two versions of the model, in
which the principal is either uninformed or informed, while in this paper the choice to
become informed is endogenous and unobservable. This, combined with an ability to
signal one’s information through the allocation of authority, would guarantee the existence
of a sophisticated equilibrium with cues about one’s type.2

The cues sent in the model have a flavor of signaling as in Spence (1973). However,
while in classic signaling models the correlation between the unobserved type and the
signal is explicit i.e. the costs of signaling are lower for types with higher productivity.
In my setup, the correlation between the unobserved preference and the state, observed
by the doctor arises endogenously and only through a complex mechanism of correlated
informative signals and optimal decisions. Moreover, the patient’s (principal’s) signaling
through delegation is only to a little extent driven by signaling incentives. In fact, even if
the doctor was blind to signaling and chose the action only according to health and the
prior belief about the patient type, there would be still room for delegation for at least
some patient types. However, the model is much more interesting if the doctor can ”infer
beliefs from actions” (see Arieli and Mueller-Frank (2017)).

The transmission of complex medical information falls into the strand of the literature
on dissemination of knowledge. As noticed e.g. by Boldrin and Levine (2005), the mere
availability of information (in terms of e.g. results of medical tests) does not make the
information accessible to a person, who may lack the expertise to interpret it. Communica-
tion is, therefore, costly (see also Austen-Smith (1994); Hedlund (2015); Eso and Szentes
(2007); Gentzkow and Kamenica (2014) for other models of explicitly costly information
transmission). Moreover, complex knowledge takes years to build and cannot be easily and
costlessly transmitted. In fact, some information – such as the patient’s preferences toward
alternative treatments – might be impossible to verbalize. This tacit knowledge, as defined in
Polanyi (1966), can only be transmitted through non-verbal cues, as in this model, where it
is signaled in the equilibrium choices.

Finally, it is practical to compare the presented interpretation of the model to other
models of doctor-patient relationship. While many models (see Xie, Dilts, and Shor (2006);
Lubensky and Schmidbauer (2013); Ehses-Friedrich (2011); Johnson and Rehavi (2016))
assume some divergence of preferences, there are some which focus on altruism. Koszegi
(2004) considers an altruistic doctor, who cares about the emotional well-being of the
patient, which results in distorted, overly optimistic messages about the patient’s health.3

2I use the word ”cues”, as in Dewatripont and Tirole (2005), however, the meaning of the term is very different.
While in Dewatripont and Tirole (2005) sending cues is a substitute for a potential costly communication, in my
model it is a way to implicitly signal one’s type in the presence of language constraints

3The doctor-patient setup in Koszegi (2004) turned later into more general model of Koszegi (2006) in which
also other applications of an altruistic agent model are proposed.
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In my model, the doctor only cares about the relationship between the state of health and
the optimal treatment, thus the only distortions arise in the communication process.

2 Model

To examine the communication frictions in isolation, I assume the doctor to be fully
altruistic towards the patient. In other words, the doctor and the patient have the same
utility function, which depends on the patient’s state of health and the choice of treatment.
In particular, I assume the utility is ut(x, a), where x ∈ [0, 1] is health, a ∈ {0, 1} is action,
that is the choice of one of two treatments (e.g. “surgery” and “drugs”), t ∈ [0, 1] is
patient’s preference type. Note that x is only observed by the doctor, and t is only observed
by the patient. The two parameters can only be imperfectly transmitted to the other party.4

The prior distribution of x and t, are, respectively U[0, 1] and Gt with some continuous,
full support density g(t), and this is common knowledge. I assume g(t) is symmetric
around an axis t = 1

2 . This assumption is not crucial in establishing the existence of an
equilibrium, but significantly helps in understanding the main contribution of the paper. I
would denote Eg(t|t ∈ [ 1

4 , 1
2 ]) = τ and describe some of the results in relation to τ. I will

show that there exists an equilibrium in which the patient chooses a symmetric strategy,
but the understanding of the cue makes the doctor’s belief (correctly) biased. For some
range of signals the bias is sufficient to change the ex-ante optimal action, which results in
an interesting non-monotone action profile. The family of signals becomes larger as τ gets
smaller, i.e. as g(t) becomes less concentrated around its mode.

I assume that both players share the same utility function.

Assumption 1. The utility u has the following properties:5

• ut(x, a) is (weakly) increasing in x for a = 0, 1

• ∃t such that ut(x, 0) > ut(x, 1) for x < t and u(x, 0) < u(x, 1) for x > t

• v(x) = ut(x, 1)− ut(x, 0) is weakly increasing in x

The first assumption is quite straightforward: utility increases with x, as the patient
enjoys more health. The second assumption allows us to interpret type t as the ”private
benchmark” of the patient-if his health falls below the benchmark, the patient prefers
treatment a = 0, otherwise the patient would rather choose treatment a = 1. The treatments

4The assumption that x and t are some numbers in the unit interval is just for expositional simplicity. We
could imagine a setup in which x is a point in some multidimensional abstract space. The space is separated
into two compact areas and in each of them one treatment is preferred to the other. The type t would then be a
boundary (e.g. a line, a plane, a manifold) between the two. However, the continuity and monotonicity conditions
that are stipulated for unit interval need to be adapted to the multidimensional setting.

5Only the last property is crucial for establishing the results, the first two are just associated with my
interpretation of the model as the utility from health. All the results would hold with those assumptions relaxed.
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could be labeled according to a specific situation that we have in mind, e.g. in a bad state
of health patient would agree to have surgery (a = 0) , while if he enjoys decent health, he
would prefer to be treated with drugs (a = 1) . What is crucial is that all types of patient
share the same ordering of actions, i.e. prefer a = 0 in low states and a = 1 in high states,
while they might, of course, differ in perception of what is the cutoff between “bad” and
“good” health. Finally, the monotonicity assumption means that the gains from choosing
the preferred treatment are greater for more extreme states of health, i.e. the disutility
from not having an operation when health is very bad is higher than when x is just below
the benchmark.

Throughout this version of the paper, u is taken to be linear, i.e.

u(x, a) = a(x− t) for a ∈ {0, 1}.

I assume that the private preference parameter t is a form of Polanyi’s tacit knowledge,
which cannot be explained in terms of language and is therefore impossible to communicate
either via cheap-talk or any form of disclosure. The only information about t that the
doctor can have comes from his beliefs regarding the patient’s observed actions.

The state of health is a complex medical term which can seldom be precisely expressed
in everyday language. Therefore, any information about x is necessarily imperfect. More-
over, understanding at least some information about x requires some mental or monetary
cost, which could be interpreted as a cost of translating medical terms into everyday
language, effort in communication, time devoted to explanations etc.

In this paper, I assume that the choice of information acquisition is binary,6 i.e. the
patient may decide to acquire an informative signal about his state of health x at a
cost c or remain uninformed (equivalently: receive an uninformative signal) at no cost.
The information might come from some private source (books, self-administered tests,
the Internet), but a setup could also be used to analyze the case in which the patient
acquires information from the doctor himself. In this interpretation, the doctor tries to
communicate the state of health and the patient may exert zero or positive (namely, c)
effort in understanding it. The doctor can observe neither the effort choice nor the final
realization of the signal (i.e. what the patient understood from his explanation). To simplify
the analysis I assume that an informative signal is binary, i.e. s ∈ {0, 1} and could be
interpreted as a recommendation of action, such that action 1 is recommended more often
for higher states.7 In particular, I shall assume that for any x the probability of signal s = 1
is P(s = 1|x) = p(x), such that p(x) satisfies:

Assumption 2. The probability of signal s = 1, denoted by p(x), satisfies:

6Binary choice is sufficient to obtain the most interesting “cue” result. Preliminary results about continu-
ous choice of investment in information suggest that one needs to be more careful when checking incentive
compatibility conditions for any arbitrary investment in information. However, the basic result should still hold.

7Note that such a recommendation is not cheap-talk.
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1. p(x) is increasing in x, with p(0) = 0 and p(1) = 1.

2. The signaling technology is symmetric around x = 1
2 , i.e. p(x) = 1− p(1− x). In particular,

p( 1
2 ) =

1
2 .

3. p(x) is S-shaped with
� 1/2

0 p(x) < ε(τ).

The first assumption is quite straightforward. The second means the signal is “fair”, in
a sense it treats low states and high states symmetrically. The third assumption ensures
that p(x) is sufficiently steep around x = 1

2 – in other words, the signal discriminates well
between states that are higher and smaller than the average.

The timing of the model is as follows:

1. Nature draws x (learned by the doctor) and t (learned by the patient).

2. The patient chooses to acquire an informative signal about x at cost C = c (or an
uninformative signal at cost C = 0).

3. After observing s|x the Patient decides to:

(a) retain the authority,

(b) delegate the decision to the doctor.

4. The chosen decision-maker chooses an action a ∈ {0, 1} .

5. The utility ut(x, a)− C is realized.

I would show that by the choice of information and then delegation, the patient implicitly
signals his type t and signal realization s. However, contrary to classic signaling models, his
choices are not pure signals. In fact, the patient decides to acquire information primarily to
improve his likelihood of the right choice and the doctor’s strategy only slightly enhances
the patient’s incentives. This makes the acquisition choice particularly robust. However,
the implicit signaling feature would be crucial in examining the equilibrium behavior.

2.1 The limit case

To get an intuition about the result, let us examine the limit case, in which the signal is
of particularly simple form: plim(x) = 1{x≥ 1

2 }.
Such a signal is the “most informative” of

symmetric binary signals, as it gives the precise location of x. Assume g(t) = U[0, 1] and
c < 1

36 .
I claim that the equilibrium is as follows: the patient acquires an informative signal

whenever t ∈
[

1
4 , 3

4

]
. Moreover, for t ∈

( 5
12 , 7

12
)

he would retain the authority, choosing an

action in-line with the signal. For t ∈
[

1
4 , 5

12

]
he would delegate if the signal is s = 0 and for

t ∈
[ 7

12 , 3
4
]

he would delegate if the signal is s = 1. The doctor chooses a = 1 (upon hearing
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delegation) if and only if x ∈
[

1
3 , 1

2

]
∪
[ 2

3 , 1
]
, and thus, his strategy is non-monotone in

health.
Let us first analyze the doctor’s strategy, taking the patient’s choice as given. Upon

hearing delegation, the doctor anticipates t ∈
[

1
4 , 5

12

]
∪
[ 7

12 , 3
4
]
. However, since x is

observed by the doctor, he knows exactly which value of the signal must have been
realized.8 Therefore, if x < 1

2 he knows delegation comes from t ∈
[

1
4 , 5

12

]
and for x > 1

2

the delegating type must be
[ 7

12 , 3
4
]
. His posterior belief is then E(t|D, x) = 1

3 for x < 1
2 and

E(t|D, x) = 2
3 for x > 1

2 . The doctor chooses a = 1 whenever x ≥ E(t|D, x), which leads
exactly to the profile above. As for the patient, a formal derivation is a bit more tedious,
but the intuition is simple: everyone apart from extreme types gets cheap information.
Middle “unbiased” types follow the signal and retain authority; “Biased” types follow the
signal if it confirms their prior choice and delegate whenever they become uncertain about
the optimal action, i.e. whenever s is close to their type.

3 Equilibrium choices

The equilibrium concept is a Perfect Bayesian Equilibrium. Denote the patient’s strategy
as (C(t), σ(s, t), a(s, t)) with the investment in information C : [0, 1] → {0, c}, allocation
of authority σ(s, t) : [0, 1]2 → {D, P} and the choice of action aP(s, t) → {0, 1}. Denote
the doctor’s response after delegation as aD(x) : [0, 1]→ {0, 1} and his posterior belief as
µ(s, t|σ, x). Since we are mainly interested in the doctor’s posterior belief about the type,
let us also denote g(t|D, x) := Esµ(s, t|D, x).

I shall propose a specific form of an equilibrium and prove its existence. In the putative
equilibrium, the patient strategy is symmetric around t = 1

2 . Extreme types of patients
do not acquire information and choose the action by themselves (since they are already
certain about their decision). The middle types, who are ex-ante close to indifference, either
acquire information (if it is cheap) and make an informed decision or remain uninformed
(if the information is expensive) and delegate the authority. Somewhat biased types chose
conditional delegation i.e. they acquire an informative signal and delegate the decision
only if it is “inconclusive”. The doctor chooses an action, based on his belief about x,
choosing aD(x) = 1 if x > Eµ(t|D, x) and aD = 0 if x < Eµ(t|D, x). More specifically, the
doctor chooses a = 1 if and only if x ∈ [x̄, 1

2 ]∪ [1− x̄, 1], with x̄ ≤ 1
2 . Observe that for x̄ = 1

2
the strategy coincides with the trivial “ex-ante” profile; however, in the more interesting
case of x̄ < 1

2 the strategy is non-monotone in health.

8Kartik (2015) describe a two-dimensional information that is muddled into one-dimensional action, so “any
observed action will generally not reveal either dimension”. Here, the information is de-muddled – the doctor
uses his knowledge of x to separate “low types with low signal” from”high types with high signal”. Such a
phenomenon would arise only imperfectly in the general model, where the probability of any signal realization is
non-degenerate.
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3.1 Action choice

If the patient makes the decision himself, he has no strategic interaction to consider.
Therefore, he would choose a = 1 if E(x|s) > t and a = 1 otherwise. Notice that for an
uninformative (zero cost) signal E(x|s) = Ex = 1

2 . On the other hand, for informative
signal the expectation E(x|s) depends on s ∈ {0, 1}. Then E(x|s = 1) > 1

2 > E(x|s = 0).
However, the general rule a = 1⇔ E(x|s) > t does not change.

If the decision was delegated to the doctor, he would choose one action over another
based on the value of x. From the patient’s point of view, the optimal doctor’s choice of
action aD(x) can be determined using the posterior belief about t, that also depends on
the Doctor’s information x. In the equilibrium, the patient can correctly anticipate the
doctor’s posterior belief E(t|D, x) and takes aD(x) as given. Assume aD(x) = 1{x̄≤x≤ 1

2 }
+

1{1−x̄<x≤1} as described above.
Once the action choice in the last step is determined, we can proceed with backward

analysis of the patient’s incentives in each step. Through this section, let us denote by
V(t, C, σ) the expected value of an information investment choice C and allocation of
authority σ (which may be conditional on observed s).

3.2 Allocation of authority

First, let us assume that the patient did not invest in informative signal and therefore has
only prior belief on x. Such a patient would decide to delegate rather than retain authority
if9:

V(t, 0, D) ≥ V(t, 0, P)⇔
� 1

0
(x− t)aD(x)dx ≥ max

(
1
2
− t, 0

)
. (1)

I shall denote the types who choose uninformed (therefore, unconditional) delegation
by ΩUD.

Claim 1. Suppose t does not acquire information. Then t ∈ ΩUD iff (1− t) ∈ ΩUD and if
ΩUD 6= ∅ then 1

2 ∈ ΩUD.

A (very simple) proof of this claim and all subsequent can be found in the Appendix.
Now, consider the case with an informative signal. The patient would only invest in

a signal if he is willing to use it. We can therefore exclude the case in which the patient
would choose action that goes against the signal realization, as such a patient would prefer
not to acquire information at all. Indeed, if a patient observes s either he would choose
a = s immediately or delegate the decision to the doctor. The patient prefers delegation to
retainment if:

V(t, c, D|s) ≥ V(t, c, P|s)⇔ E(x− t|s, D) ≥ E(x− t|s, P)

9I implicitly assume that the indifferent patient chooses delegation.
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� 1

0 (x− t)p(x)aD(x)dx ≥
�
(x− t)p(x) if s = 1,� 1

0 (x− t)(1− p(x))aD(x)dx ≥ 0 if s = 0.

With simple algebra and an observation that
�

xp(x)1{aD=i}dx

P(aD=i) = E(x|s, aD = i), the
conditions could be summarized as:E(x|s, aD = 0) ≤ t for s = 1,

E(x|s, aD = 1) ≥ t for s = 0.
(2)

Claim 2. For any informative signal realization s, there exists a range of patient types Ωs
CD,

who prefer to delegate the authority, conditionally on being informed.

To get an intuition about the result, notice that for any signal realization at least type
t = E(x|s) would find it strictly profitable to delegate, as conditional on his information, he
is indifferent between the two actions. Thus, he may benefit by delegating to the possibly
better–informed doctor. By continuity, there exists a range of types around t = E(x|s) who
would also prefer delegation. The intuition that relatively large (small) types delegate
whenever the signal is large (small)- and thus the type is implicitly correlated with signal –
would be crucial in understanding the equilibrium communication. Full proofs of all the
claims can be found in the Appendix.

Claim 3. The sets Ω0
CD and Ω1

CD are symmetric around an axis t = 1
2 and disjoint i.e.

Ω0
CD = [t, t̄] and Ω1

CD = [1− t̄, 1− t] for some t < t̄ < 1
2 .

The symmetry of delegation decision is a direct result of the symmetry of aD and the
signal s|x around x = 1

2 . This implies the symmetry of the delegation decision. There is no
type who delegates for both signal realizations, as such a type would prefer to deviate to
not acquiring signal at all (and delegating immediately).

3.3 Information acquisition

Take the strategies in the second period described in the previous subsection as given and
assume the doctor’s. Going one step back, the patient needs to decide whether to invest
in an informative signal or not. The expected value of the decision in the second step is
the maximum of the two possible options (delegation or retainment) for both levels of
investment. Therefore, the patient would choose to acquire an informative signal:

Es max{V(t, c, D|s), V(t, c, P|s)} − c ≥ max {V(t, D, 0), V(t, P, 0)} .

Lemma 1. The set of types who acquire information Ωc is symmetric around t = 1
2 . Extreme types

t = 0 and t = 1 (and their neighborhood) never acquire information.
For a given signal distribution p there exists two upper bounds ψ, φ, such that if c ∈ (0, ψ)

then Ωc 3 1
2 and there exist types who acquire information and choose according to their signal. In

such a case the set ΩUD is empty. If c ∈ [ψ, φ], then all types who acquire information delegate

10



Figure 1: The investment in information and delegation choice for c < ψ (left) and
ψ ≤ c ≤ φ (right).

conditionally on their signal Ωc = Ωc ∩
(
Ω0

CD ∪Ω1
CD
)
. If c > φ, nobody acquires information

and the game is trivial.

The Lemmas are simply summarized in Figure 1. Extreme types close to t = 0, 1 have
such strong preferences towards one of the treatments that they do not feel the need to
invest in information. If the cost of information is small, all “medium types” acquire
information and some of them choose conditional delegation. Notice that by Claim 3,
informed-and-delegating types form two disjoint intervals, therefore types close to t = 1/2
choose to make a decision by themselves. This is pictured in the left panel of Figure 1.

If the cost of the signal is big enough, the types close to t = 1
2 are hit by a “median

patient curse”.10 Notice that type t = 1
2 finds it ex-ante most difficult to choose between

the two actions, therefore he has an incentive to acquire information. However, since the
information is (ex-ante) symmetric, type t = 1

2 would expect it to be inconclusive and
costly. Therefore, he would rather delegate to a perfectly informed doctor.

Note that by Lemma 1, there are no other switches in the patient strategy than those in
the Figure 1.

3.4 Doctor’s strategy and beliefs

Given the (known) informativeness of the signal, the doctor expects the patient to delegate
whenever t ∈ Ω0

CD ∪Ω1
CD ∪ΩUD. The doctor optimally chooses actions, taking into account

his expectation about the type. Formally, the doctor chooses aD(x) = 1 for x ≥ E(t|D, x)
and aD(x) = 0 for x < E(t|D, x). Notice however that the formula E(t|D, x) is not constant
and is a function of x. Denote:

β(x) = E(t|D, x) =
�

tg(t|D, x)dt�
g(t|D, x)dt

,

where g(t|D, x) is the interim doctor’s belief given the observed x and the expected
patient’s strategy {σ(s) = D} ⇔ t ∈ ΩCD ∪ΩUD. For a given x, the posterior belief about
the type distribution g(t|D, x) would typically not have a full support, neither will it be
symmetric around t = 1/2. The doctor knows x, therefore, he can correctly infer what are
the probabilities of acquiring a specific signal. In particular, the interval “closer” to x is
more likely than the other. Thus, if doctor observes x (say, x > 1

2 ) and delegation, then

10Notice that for a symmetric distribution median = mean.
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he correctly infers that the most likely signals are those “close to” x, and such signals are
indecisive for types t “close to” x. Therefore, his posterior belief about types is skewed
towards x. Formally:

g(t|D, x) =



g(t)(1−p(x))
A(x) for t ∈ Ω0

CD
g(t)p(x)

A(x) for t ∈ Ω1
CD

g(t)
A(x) for t ∈ ΩUD

0 for all other t

where A(x) = (1− p(x))
�

Ω0
CD

g(t)dt + p(x)
�

Ω1
CD

g(t)dt +
�

ΩUD
g(t)dt. Note that since g is

symmetric then
�

Ω1
CD

g(t) =
�

Ω0
CD

g(t), therefore A(x) =
�

Ω0
CD

g(t)dt +
�

ΩUD
g(t)dt.

Lemma 2. Assume g is symmetric around an axis t = 1
2 . Then in any equilibrium, C, σ are

symmetric around an axis t = 1
2 , but the doctor’s cutoff function (i.e. the a posteriori expected

patient type) E(t|D, x) is not symmetric around an axis x = 1
2 . Instead β(x) = E(t|D, x) is

weakly increasing in x (with β( 1
2 ) =

1
2 ) and β(x) + β(1− x) = 1.

The statement of the Lemma may not look as exciting as it really is. To fully understand
it’s value, notice first that if the doctor’s posterior belief about the distribution of t
was symmetric around t = 1

2 , the function β(x) would be constant and equal to 1
2 ,

independently of x. However, the doctor’s belief in the equilibrium is skewed towards
the “correct” t, even though the patient’s strategies are symmetric. This phenomenon can
be only sustained whenever the doctor observes x, because then, given distribution p(x)
he can determine more likely signal realizations and, using their equilibrium association
with t, infer what are more likely values of t. The doctor not only correctly anticipates
the information acquisition choice, but also exploits the correlation of the doctor’s and
patient’s signals. The correlation along with the equilibrium delegation decision allows
the doctor to infer the most likely range of t, even though t is never explicitly signaled.
However, the important issue is whether the “bias” in posterior beliefs is strong enough
to induce the doctor to change the a priori optimal actions. For an S-shaped p(x) this is
exactly the phenomenon that may arise.

Denote by τ̃ :=

�
Ω0

CD
tg(t)dt+

�
ΩUD

tg(t)dt

A , that is, the expected type of the delegating
patients. Observe that if ΩUD = ∅ then τ̃ < τ := E(t|t ∈ [1/4, 1/2]) . However, in general
τ̃ is determined in the equilibrium – in particular, it depends on c.

Theorem 1. If p′( 1
2 ) > 1

1−2τ̃ (with a sufficient condition p′( f rac12) > 1
1−2τ if c < ψ) the

doctor’s action profile follows a non-monotone pattern, that reflects his asymmetric belief upon
observing delegation:

aD(x) =

1 for x∈
[

x̄, 1
2

]
∪ [1− x, 1],

0 otherwise,
for some x̄ <

1
2

12



Otherwise, the doctor’s action profile in equilibrium coincides with the “naive” one:

aD(x) =

1 for x ∈
[

1
2 , 1
]

,

0 otherwise.

The doctor’s choice is pictured in Figure 2. In equilibrium with cues, the doctor
recommends action a = 0 for x small (which is intuitive), but also for relatively big
x ∈

(
1
2 , 1− x

)
. The second interval is the region in which the bias in posterior beliefs

plays a dominant role. In particular, even though the doctor knows x is relatively big a
priori, the implicit signal coming from the recommendation makes him believe t is even
bigger. Therefore action a = 0 is preferred. Such a nontrivial profile is only possible when
the effect on the posterior beliefs induced by a signal and the delegation decision is strong
enough. In particular, the marginal change in beliefs around x = 1

2 must be large, namely
p′( 1

2 ) >
1

1−2τ̃ . However, if this requirement is not satisfied, then even though the posterior
belief is indeed skewed in the “right” direction, the perturbation is not strong enough to
induce a switch from naive beliefs.

As a corollary from the Lemma, we can claim the following, main result of the paper:

Theorem 2. There exists a Perfect Bayesian Equilibrium of the game with implicit signaling of
type through delegation. In such an equilibrium, the patient’s strategy is symmetric around t = 1

2 ,
while the doctor’s strategy may be non-monotone in health state. In particular, the equilibrium
choices are as follows:

1. If c ≤ ψ then only the extreme patient remain uninormed (and retain their authority). The
middle types acquire inormation and retain authority, while the ”somewhat biased” types
delegate conditionally on the signal. If p′( 1

2 ) >
1

1−2τ̃ , the doctor responds with non-monotone
action profile.

2. If c ∈ [ψ, φ] then only the somewhat biased types acquire inormation. The extreme types
remain uninormed and retain the authority. The middle types remain uninormed and delegate
authority. If p′( 1

2 ) >
1

1−2τ̃ (which now is a stronger condition than above, as τ̃ depends on
c) , the doctor responds with non-monotone action profile.

3. If c > φ no patient type acquires information. Types t ∈ [ 1
4 , 3

4 ] delegate and the remaining
types retain authority. The doctor’s strategy is trivial, as no inormation about the signal is
transmitted by delegation.

The theorem describes signal families, for which the doctor’s strategy becomes non-
monotone in action. The intuition is that the signaling function should indeed resemble a
letter ’S’ and be steep around p(1/2). Notice that in the introductory example we examined
a limit case with ”infinite”11 steepness and perfectly flat tails. The theorems 1 and 2 explain
how this extreme signal structure could be generalized and adapted to continuous signal
functions.

11Formally, indefinite.

13



Figure 2: The action profile chosen by doctor in equilibrium if p′( 1
2 ) is small (left) and

large (right)

4 Summary

In this paper I examine a principal-agent model with two-sided private information and
no conflict of interest in a context of doctor–patient communication. I assume that the
decision–relevant information is two dimensional, and that each dimension is observed
just by one agent. I show that if the principal has access to a costly, but informative signal
about the dimension known to the agent, the agent can not only anticipate which types
would find it valuable to acquire information, but also correctly infer the cue about the
principal type from his decision to delegate or retain the authority.

The model describes a phenomenon of non-verbal communication through equilibrium
actions and demonstrates how the joint information about the principal’s strategies and the
agent’s private signal allow the latter to make nontrivial conclusions about the type of the
former. Such a phenomenon is only possible because the two parties obtain potentially
correlated information about the same variable and the delegation choice is an implicit
information about both the observed signal and its relation to the principal’s preferences.
As a result, the agent’s belief is correctly biased. Moreover, if the signal is S-shaped and
sufficiently precise in distinguishing states x > 1

2 from states x < 1
2 the bias is strong

enough to change the a priori optimal actions and there may arise an equilibrium, in which
the agent’s action profile chosen upon delegation is non-monotone in the state of the world.

I focus on communication frictions and implicit signaling to stress that when the
information is cheaply available, even if the players observe nothing but the apparent
”indecisiveness” of the other party, a correct inference about their preferences and strategies
can still be made. This implicit communication through delegation helps the players to
coordinate on the preferred outcome.
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Appendix: Proofs

Proof of Claim 1: Inequality in (1) could be rewritten as:

� 1

0
xaD(x) ≥ max

(
t
2

,
1− t

2

)
.

It is now clear that if the condition holds for t, it also holds 1 − t. Also, the RHS is
minimized by t = 1

2 , so if any t satisfies the condition, so does t = 1
2 .

Proof of Claim 2: Assume that aD follows the putative pattern. Intuitively, aD = 1 must
be chosen more often for higher states, so:

E(x|s, aD = 0) < E(x|s) < E(x|s, aD = 1), (3)

since
E(x|s) = E(x|s, aD = 0) · P(aD = 0) + E(x|s, aD = 1) · P(aD = 1). (4)

Consider t varying from 0 to 1. As t increases up to E(x|s), it must hit a point where
ts = E(x|s, aD = 0) and for all t ∈ [ts, E(x|s)] the first inequality of (2) is satisfied. Similarly,
for t↘ E(x|s) the second inequality of (2) is satisfied, and as t increases to 1, there exists
a point t̄s such that for any t > t̄s the delegation is no longer preferred. Therefore, for
t ∈ [ts, t̄s] =: Ωs

D delegation is preferred, while for t /∈ [ts, t̄s] the patient prefers to retain
authority. It is important to notice that [ts, t̄s] 3 E(x|s) and since the delegation decision is
made after learning s, the interval differs with the realization of s.

Proof of Claim 3: Assume t satisfies condition (2) for s = 1 and we need to show that
1− t satisfies it for s = 0. Without loss of generality, assume t satisfies the first inequality
of (2), i.e.

E(x|s = 1) > t and E(x|s = 1, aD = 0) ≤ t

Then I need to prove that 1− t satisfies inequality:

E(x|s = 0, aD = 1) ≥ 1− t.

To prove this, it is enough to show that E(x|s = 0, aD = 1) = 1− E(x|s = 1, aD = 0). I
shall use double symmetry of all the ingredients:

E(x|s = 0, aD = 1) =

�
x(1− p(x))1x∈{aD=1}�

1− p(x)1x∈{aD=1}
=

�
xp(1− x)1x∈{aD=1}�
p(1− x)1x∈{aD=1}

=

=

�
(1− y)p(y)1y∈{aD=0}�

p(y)1y∈{aD=0}
= 1−

�
yp(y)1y∈{aD=0}�
p(y)1y∈{aD=0}

= 1− E(x|s = 1, aD = 0).

Therefore, if t ∈ Ω1
CD then 1− t ∈ Ω0

CD.
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We might also notice that by more general considerations, the two intervals must be
disjoint. If there exists some t ∈ Ω0

CD ∩Ω1
CD who would delegate for any signal, then he

would rather not acquire the costly information at all.
Such considerations allow us to use a somewhat simpler notation. Define [t, t̄] := Ω0

CD
then Ω1

CD = [1− t̄, 1− t].

Proof of Lemma 1: There exist four possible strategies: uninformed decision (C, σ) =

(0, P), informed decision (c, P), uninformed delegation (0, D), and informed delegation
(c, D). Recall that by Claim 3 delegation for an informed agent is always conditional
on the signal and is chosen only for a signal realization closer to t, while uninformed
delegation is unconditional by definition. Moreover, if the patient finds it optimal to choose
informed decision, it must be the case that the chosen actions are different for different
signal realizations and consistent with them, more specifically aP = s.

I shall analyze the payoffs of all the above strategies and try to determine what is the
optimal profile given generic t. Since the problem is symmetric around t = 1

2 , I shall
assume explicitly that t ≥ 1

2 . Then:

V(t, 0, P) =max
(

1
2
− t, 0

)
= 0

V(t, 0, D) =

� 1

0
(x− t)aD(x) =

3
8
−
(

1
2
− x̄
)2
− t

2

V(t, c, P) =P(s = 0) · 0 + P(s = 1)

� 1
0 (x− t)p(x)dx� 1

0 p(x)dx
− c =

� 1

0
xp(x)dx− t

2
− c

V(t, c, D) =P(s = 0) · 0 + P(s = 1)

� 1
0 (x− t)2p(x)aD(x)dx� 1

0 p(x)dx
− c =

� 1

0
(x− t)p(x)aD(x)dx− c

I shall analyze how the optimal strategy changes with t moving from 1
2 to 1 using five

observations:

1. For t = 1 uninformed decision V(t, 0, P) dominates any other strategy.

2. Either V(t, c, P) ≥ V(t, 0, D) ∀t (for c small) or V(t, c, P) < V(t, 0, D) ∀t (for c big).

3. V(t, c, D) > V(t, c, P) for t sufficiently big.

4. V(t, c, D) > V(t, 0, D) for t sufficiently big.

5. There exist t such that V(t, c, D) is optimal, in particular, there are always types who
acquire information.

The first observation is trivial – as t = 1 (or close to 1) all the payoffs become negative,
apart from V(t, 0, p). The second observation stems from the fact, that both formulas are
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of the form − t
2 + constant, so in comparison, only the constant matters. In particular:

V(t, 0, D) ≤ V(t, c, P)⇔ 3
8
−
(

1
2
− x̄
)2
≤

� 1

0
xp(x)dx− c

V(t, 0, D) ≤ V(t, c, P)⇔ c ≤
� 1

0
xp(x)dx− 3

8︸ ︷︷ ︸
<0

+

(
1
2
− x̄
)2

=: ψ (5)

The necessary condition being:

ψ =

(
1
2
− x
)2
− 3

8
+

� 1

0
xp(x)dx ≥ 0 (6)

I shall claim that whenever
� 1

2
0

(
1
2 − x

)
p(x) is sufficiently small, the inequality (6)

holds. Namely, there exists a function ε(τ) such that when
� 1

2
0

(
1
2 − x

)
p(x) < ε(τ), then

the inequality above is guaranteed. For clarity purpose, this part of the proof is moved
below in the Appendix, under Lemma 3.

The third observation is a bit more subtle. Since aD(x) is an indicator function V(t, c, D)

is a “truncated” version of integral inV(t, c, P), in which some values of the function
(x− t)p(x) are replaced by 0. Such a transformation may only be beneficial if the values
replaced by 0 were negative. The function (x− t)p(x) is negative for x < t, so the bigger t
is, the more attractive is V(t, c, D) relative to V(t, c, P). Therefore V(t, c, D) > V(t, c, P) for
t sufficiently big.

Similar reasoning applies to the fourth statement. V(t, c, D) and V(t, 0, D) differ only
by a weighting function and a constant c. The function p(x) is between 0 and 1, and thus
places relatively small weight on negative values of (x− t), thus strongly diminishing their
effect on the integral (while the effect of positive values is only slightly attenuated). In
particular, notice that the limit of V(t, c, D)−V(t, 0, D) as t→ 1 is:

� 1

0
(1− x)(1− p(x))aD(x)dx− c > 0 for c small.

Observe, that if c satisfies inequality (5), then c also satisfies:

� 1

0
(1− x)(1− p(x))aD(x)dx− c ≥

� 1

0
(1− x)(1− p(x))aD(x)dx−

� 1

0
xp(x)dx +

� 1

0
xaD(x) =

=

� 1

0
p(x)(1− x)(1− aD(x))dx > 0.

Therefore, as long as c < ψ, V(t, 0, D) is never chosen. In this case, types close to 1/2
chose V(t, c, P), bigger types switch to V(t, c, D) and extreme types switch to V(t, 0, P).

It is a bit more difficult to deal with a slightly bigger c, that does not satisfy (5). Then
the middle type would choose (0, D) instead of (c, P). However, there are still some types,

17



who acquire information. More specifically, for t0 > 1
2 satisfying

� 1
0 (x − t0)aD = 0 the

optimal choice is (c, D), as long as c is not too big. Indeed, as E(x|s = 1) ≤ E(x|s =

1, aD(x) = 1 and E(x|aD(x) = 1) ≤ E(x|s = 1, aD(x) = 1, then at least for t0 it must be
that V(c, D, t0) + c > 0. By continuity, there exists an upper bound φ such that if c < φ at
least someone acquires information.

If c > φ and nobody acquires information, the equilibrium is trivial, as no significant
information is transmitted through delegation.

Proof of Lemma 2

Recall the definition of the expected type (upon delegation):

β(x) = E(t|D, x) =
� 1

0
tg(t|D, x)dt.

With:

g(t|D, x) =


g(t)(1−p(x))

A for t ∈ Ω0
CD,

g(t)p(x)
A for t ∈ Ω1

CD,
g(t)

A for t ∈ ΩUD,

where A =
�

Ω0
CD

g(t)dt +
�

ΩUD
g(t)dt, independent of x. To see that β( 1

2 ) = 1
2 , observe

that g(t|D, 1
2 ) is a symmetric density function, so the expected value with respect to t is

1
2 . Moreover, notice that β(x) is simply an affine transformation of p(x) that preserves

symmetry around a point
(

1
2 , 1

2

)
.

β(x) =
1
A

[
p(x)

�
Ω1

CD

tg(t)dt + (1− p(x))
�

Ω0
CD

tg(t)dt +
�

ΩUD

tg(t)dt

]
.

β(x) =

p(x)

(�
Ω1

CD
tg(t)dt−

�
Ω0

CD
tg(t)dt

)
A

+

�
Ω0

CD
tg(t)dt +

�
ΩUD

tg(t)dt

A

 .

Denote by τ̃ :=

�
Ω0

CD
tg(t)dt+

�
ΩUD

tg(t)dt

A , that is, the expected type of a patient who chooses
delegation. Since both sets Ω0

CD ∪Ω1
CD and ΩUD are symmetric around t = 1

2 , it is easy to

show that

(
�

Ω1
CD

tg(t)dt−
�

Ω0
CD

tg(t)dt
)

A = 1− 2τ̃. Therefore:

β(x) = (1− 2τ̃)p(x) + τ̃

In particular, β(x) is increasing, convex on
[
0, 1

2

)
and concave on

(
1
2 , 1
]

and symmetric

around
(

1
2 , 1

2

)
i.e. β(x) = 1− β(1− x).
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Proof of Theorem 1:

The proof is simple and follows directly from properties of β(x) derived in the proof of
Lemma 2 above. Recall that the doctor chooses aD(x) = 1 if x > β(x) and aD(x) = 0
otherwise. From Lemma 2 we already know β(x) is increasing and crosses line id(x) = x
at least in x = 1

2 . Since it’s an affine transformation of p(x) and limx→0 β(x) > 0 (which
implies limx→1 β(x) < 1), then it crosses line id(x) = x at most three times in (0, 1). I will
show that if β′(x) > 1 then β(x)− x = 0 has exactly three solutions in (0, 1) and define

x = min{x : β(x) = x}. (7)

Let us start with the limit. This is simple: observe that whatever x is, if delegation was
observed, it must have come from a type t ∈ ΩCD ∪ΩND. Then

∀x E(t|D, x) ≥ min ΩCD ∪ΩUD = t ⇒ lim
x→0

E(t|D, x) ≥ t > 0.

For the derivative, recall that:

β′(x) = p′(x)(1− 2τ̃).

β′(x) > 1⇔ p′(x) >
1

1− 2τ̃
=: α(c). (8)

Assume c is small, namely c ≤ ψ, as defined in inequality (5). For such a c, no types
choose to delegate conditionally. Then τ̃ = E(t|t ∈ Ω0

CD) and 1
1−2τ̃ < 1

1−2τ , therefore as
long as p′(x) > 1

1−2τ , the existence of x < 1
2 is guaranteed, regardless of c. For c > ψ,

however, no useful upper bound exists.

Lemma 3. If
� 1

2
0

(
1
2 − x

)
p(x)dx ≤ φ(a) :=

(1−2a)(3−5a)−a
(√

a2+2(1−2a)(3−5a)−a
)

16(3−5a)2 then inequal-
ity (6)holds.

Proof. Denote r =
(

1
2 − x

)
. Recall that by definition of x in (7):

x = p(x)(1− 2τ̃) + τ̃.

Notice that p(x) might be considered a cumulative distributive function for some continu-
ous symmetric unimodal distribution Z. It is easy to determine that:

Var(Z) =
� 1

0
x2 p′(x)dx− 1

4
parts
=

(
1−

� 1

0
2xp(x)− 1

4

)
= 2

(
3
8
−
� 1

0
xp(x)dx

)
.

On the other hand, since Z is symmetric, we can write:

Var(Z) =
� 1

0

(
1
2
− x
)2

p′(x)dx = 2
� 1

2

0

(
1
2
− x
)2

p′(x)dx
parts
= 4

� 1
2

0

(
1
2
− x
)

p(x)dx.
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Since p is concave on
(

0, 1
2

)
, it can be bounded from above by piecewise linear function,

using the property p(x) = x−τ̃
1−2τ̃ :

� 1
2

0

(
1
2
− x
)

p(x)dx =

� x

0

(
1
2
− x
)

p(x)dx +

� 1
2

x

(
1
2
− x
)

p(x)dx ≤

≤
� x

0

(
1
2
− x
)

p(x)
x

xdx +

� 1
2

x

(
1
2
− x
)

x− τ̃

(1− 2τ̃)
dx =

=
1

48(1− 2τ̃)

(
−8τ̃x2 + 12τ̃x− 6τ̃ + 1

)
=

1
48(1− 2τ̃)

(
1− 2τ̃

(
4r2 + 2r + 1

))
.

A sufficient condition for inequality (6) to hold is therefore:

1
12(1− 2τ̃)

(
1− 2τ̃

(
4r2 + 2r + 1

))
≤ 2r2

It is satisfied whenever r ≥ 1
4(3−5τ̃)

(√
τ̃2 + 2(1− 2τ̃)(3− 5τ̃)− τ̃

)
or, alternatively, if

Var(Z) < 4ε(τ̃), where ε(τ̃) = 1
12

(1−2τ̃(4r2+2r+1)
(1−2τ̃)

evaluated at r = 1
4(3−5τ̃)

(√
τ̃2 + 2(1− 2τ̃)(3− 5τ̃)− τ̃

)
.

After a bit of tiresome algebra, we get the required sufficient condition to be:

� 1
2

0

(
1
2
− x
)

p(x) ≤
(1− 2τ̃)(3− 5τ̃)− τ̃

(√
τ̃2 + 2(1− 2τ̃)(3− 5τ̃)− τ̃

)
16(3− 5τ̃)

=: ε(τ̃).

Notice that τ̃ is determined in equilibrium. However, if ΩUD = ∅ then τ̃ = E(t|t ∈
Ω0

CD) < τ and since ε is increasing, then the condition with τ instead of τ̃ is stronger
(and sufficient). To get some more intuition, check Figure 3 for a plot of an upper bound
on Var(Z) and notice that since that for an arbitrary unimodal distribution we only have
Var(Z) ≤ 1

12 , the bound is non-trivial and indeed necessary.
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