Malgorzata Knauff

spring 2019/2020

Outline:

Demand Motivation Economic model Econometric model

Demand

- Motivation

Why are we concerned with demand systems?

Information on incentives for firms influencing

- pricing decision
- ▶ alternative investments (new products, advertising, ect.)
- ► Welfare analysis
 - consumer surplus gains to product introductions
 - impact of regulatory policies
 - construction of *ideal price indices*

Demand

- Motivation

Why are we concerned with demand systems? - cont.

- Demand systems are the major tool for comparative static analysis of any change in a market that does not have an immediate impact in costs
- Estimation of price elasticities are important for:
 - Marketers
 - in designing pricing policies
 - introducing new goods
 - Policy officials
 - in designing tax schemes
 - ▶ in evaluating mergers

– Demand

- Economic model

The Consumer's Problem

- We assume the consumer's preference relation is represented by a utility function u, that is differentiable, strictly increasing, and strictly quasiconcave
- ► The feasible set $B = [\mathbf{q} \in R^n_+ | \mathbf{p} \cdot \mathbf{q} \leq y]$, where y > 0 and $\mathbf{p} > 0$
- We assume that the consumer chooses the alternative from her budget set that is best according to her preferences
- Choose an alternative from the budget set that maximizes utility subject to the constraint that total expenditure does not exceed income
- ► The consumer chooses a \mathbf{q}^* that solves $max_{q \in R^n_+}u(\mathbf{q})$ s.t. $\mathbf{p} \cdot \mathbf{q} \leq y$

Demand

-Economic model

Consumer's problem: Questions

Is there a solution?

- Yes. Weierstrass theorem
- Is the solution unique?
 - Yes. Because B is convex and the utility function has been assumed to be strictly quasiconcave
- ► How do we find the solution?

Demand

-Economic model

Characterization of the Solution

- Define the Lagrangian $L(q; \lambda) := u(\mathbf{q}) \lambda(\mathbf{p} \cdot \mathbf{q} y)$
- Necessary and sufficient condition for q^{*} > 0 to solve the consumer's problem is that there exists λ^{*} ≥ 0 such that:

$$\frac{\partial L}{\partial q_i} = \frac{\partial u(\mathbf{q}^*)}{\partial q_i} - \lambda^* p_i = 0, i = 1, 2, .., n$$

and

$$\frac{\partial L}{\partial \lambda} = \mathbf{p} \cdot \mathbf{q} - y = 0$$

Demand

- Economic model

Characterization of the Solution – cont.

► The condition p · q - y = 0 simply says that the consumer spends all her income

This follows from the assumption of strict monotonicity.

 \blacktriangleright If the Lagrange parameter λ^* is strictly positive, the remaining conditions can be rewritten as

$$\frac{\partial u(\mathbf{q}^*)/\partial q_j}{\partial u(\mathbf{q}^*)/\partial q_k} = \frac{p_j}{p_k}$$

for all j = 1, 2, ..., n and k = 1, 2, ..., n

This says that at the optimum, the marginal rate of substitution between any two goods must be equal to the ratio of the goods' prices

Demand

- Economic model

Marshallian Demand Function

- The solution to the consumer's problem depends on the parameters **p** and y of that problem
- ► The corresponding function q^{*} = q(p, y) is known as the ordinary, or Marshallian demand function
- This demand function summarizes all relevant information about consumer demand behavior

Demand

-Economic model

Properties of the Marshallian Demand Function

- If our model of consumer behavior is correct, then demand behavior must display certain observable characteristics
- These can be used to test the theory on the one hand and to improve empirical estimates when the theory is taking for granted on the other hand
 - 1. Budget Balancedness: $\mathbf{p} \cdot \mathbf{q}(\mathbf{p}, y) = y$ holds for all $\mathbf{p}; y$
 - 2. Homogeneity of Degree Zero: **q**(**p**, *y*) is homogeneous of degree zero in all prices and income
 - 3. The Slutsky matrix $[s_{ij}]$ is symmetric and semidefinite

$$s_{ij} = rac{\partial q_i(\mathbf{p}, y)}{\partial p_j} + q_j(\mathbf{p}, y) rac{\partial q_i(\mathbf{p}, y)}{\partial y}$$

Demand

-Economic model

Budget Balancedness and Homogeneity

- Budget Balancedness simply means that consumer spending exhausts income
- ► Homogeneous of degree zero in all prices and income means:

$$\mathbf{q}(t\mathbf{p},ty)=\mathbf{q}(\mathbf{p},y)$$

for all $\mathbf{p}, y, t > 0$

- To prove that this property holds, it suffices to observe that the budget set remains unchanged when all prices and income are multiplied by t > 0
- Only relative prices and real income affects demand behavior

– Demand

Economic model

Slutsky Substitution Effects

Rewriting

$$s_{ij}(\mathbf{p},y) = rac{\partial q_i(\mathbf{p},y)}{\partial p_j} + q_j(\mathbf{p},y) rac{\partial q_i(\mathbf{p},y)}{\partial y}$$

as

$$\frac{\partial q_i(\mathbf{p}, y)}{\partial p_j} = s_{ij}(\mathbf{p}, y) - q_j(\mathbf{p}, y) \frac{\partial q_i(\mathbf{p}, y)}{\partial y}$$

provides the following interpretation:

- ▶ Total effect of an increase in price p_j on the demand for good i
- Income effect of an increase in price p_j on the demand for good j
- Substitution effect of an increase in price p_j on the demand for good i
- ► s_{ii}(**p**; y) is the (familiar?) substitution effect of a change in price p_i on the demand for good i

– Demand

Economic model

Negative Semidefiniteness and Symmetry of the Slutsky Matrix: What does it Mean?

- An $n \times n$ matrix A is negative semidefinite if for all vectors $z \in R^n$, $\mathbf{z}^T A \mathbf{z} \leq 0$
 - In particular, if A is negative semidefinite its diagonal elements satisfy a_{ii} ≤ 0
 - So, negative semidefiniteness of the Slutsky matrix is a generalization of the observation that the own-price substitution effects s_{ii}(**p**; y) are negative
- The symmetry of the Slutsky matrix means that the substitution effect of an increase in the price of good j on the demand for good i is identical to the substitution effect of an increase in the price of good i on the demand for good j

Demand

-Economic model

Further interpretation

Negativity of the own-price substitution effects s_{ii}(**p**; y) implies the law of demand

► Recall the following definitions:

- A good is normal if its consumption increases when income increases, holding prices constant
- A good is inferior if its consumption decreases when income increases, holding prices constant
- Law of Demand: A decrease in the own price of a normal good causes the quantity demanded of the good to increase

Demand

-Economic model

Integrability Theorem

- Budget balancedness and symmetry imply homogeneity
- The Integrability Problem: we have a demand function, is there any utility function that generates it?

Theorem

A continuously differentiable function $\mathbf{q} : R_{++}^{n+1} \to R_{+}^{n}$ is the demand function generated by some increasing quasiconcave utility function if it satisfies budget balancedness, symmetry and negative semidefiniteness

Hence we can consider linear demand functions

– Demand

-Econometric model

Data

- ► To empirically estimate market demand, we need data
- ► Ideally, this data will have come from a controlled experiment
- ► This way we are assured that our data is a random sample
- \blacktriangleright We conduct the following experiment to collect demand data on good Q
 - 1. We randomly sampled N consumers from the population
 - 2. For each consumer *i*, we measure the consumer's income y_i , and then confront the consumer with a randomly selected price p_i
 - 3. We then observe consumer *i*'s buying behavior q_i
- ► The experiment will result in a random sample of data

$$\{q_i, p_i, y_i : i = 1, 2, ... N\}$$

Demand

-Econometric model

- To derive an econometric model through which we can estimate market demand, we translate the economic model into a statistical model
- ► The quantities *q_i* that we observe in the data are random variables
- In general, we can decompose a random variable into two parts:
 - 1. a systematic part $\boldsymbol{\mu}$
 - 2. an unobservable error ε_i^D
- The systematic part of q_i is its expected value $\mu = E[q_i]$
- The unobservable error ε^D_i is the stochastic part of q_i var[q_i] = var[ε^D_i] = σ²

- Demand

-Econometric model

- We use economic theory to give us our predictions about q_i .
- ► For example

$$E[q_i] = \alpha_0 + \alpha_1 p_i + \alpha_2 y_i$$

- The error ε_i^D is an IID "demand shock" which captures how consumer decisions may differ from the average
- Thus, our econometric model for demand is

$$q_i = \alpha_0 + \alpha_1 p_i + \alpha_2 y_i + \varepsilon_i^D, \varepsilon_i^D \sim IID(0, \sigma^2)$$

Econometric model

Interpretation

- α₀, α₁, α₂ are the parameters from the consumer utility function
- Moreover, the price elasticity and the income elasticity of demand are

$$\eta_{p} = \frac{\partial q_{i}}{\partial p_{i}} \frac{p_{i}}{q_{i}} = \alpha_{1} \frac{p_{i}}{q_{i}}$$
$$\eta_{y} = \frac{\partial q_{i}}{\partial y_{i}} \frac{y_{i}}{q_{i}} = \alpha_{2} \frac{y_{i}}{q_{i}}$$

Demand	
--------	--

-Econometric model

- Given the random sample nature of our data {q_i, p_i, y_i : 1 = 1, 2, ...N} our econometric model q_i = α₀ + α₁p_i + α₂y_i + ε^D_i, ε^D_i ~ IID(0, σ²) has certain useful properties.
- Assumptions:

1.
$$E[\varepsilon_i^D] = 0$$

- 2. $E[\varepsilon_i^D p_i] = 0$, i.e. p_i is independent from ε_i^D
- 3. $E[\varepsilon_i^D y_i] = 0$, i.e. y_i is independent from ε_i^D
- They are satisfied given the random sample properties
- \blacktriangleright Thus the OLS estimator is unbiased and consistent, α is identified by OLS
- Note the importance of having a random sample
 - It is the random sampling assumption through which we can assert that Ass.1., 2., 3. are satisfied
 - \blacktriangleright And it is this moment condition which allows us to identify α by OLS