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Abstract

When the information might be complex and the information processing capacity of
economic agents is uncertain, noisy messages do not necessarily indicate bad news. I
exploit this intuition to examine a simple sender–receiver persuasion game in which the
precise communication of the state of the world depends not only on sender’s efforts
but also on the state’s complexity and the receiver’s competence. In this environment
the sender-optimal equilibria maximize the amount of noise. The receiver faces a
”competence curse” – a smarter type might end up with less information and lower
payoff than a receiver with a somewhat smaller competence.

1 Introduction

It is hardly possible to imagine communication between two people that would allow
for perfect exchange of any given information. Misunderstanding, misinterpretation or
just imprecision might arise due to exogenous frictions, such as the sender’s ability to
formulate the message, the receiver’s competence to absorb and correctly interpret the
information content of the message or just the complexity of the matter discussed. Those
competence frictions are an inherent feature of real-world communication and there is
wide literature regarding such ”language barriers” (a term coined by Blume and Board
(2006)). However, there is also an endogenous source of frictions coming from possible
divergence of interests between the two parties.

Miscommunication may be particularly bothersome if it leads to suboptimal decisions.
Between 2006 and 2010, more than a million households in Poland, Croatia, Romania and
other Eastern European countries took mortgage loans denominated in Swiss franc, to
escape high borrowing costs in their home countries. As the franc had appreciated until
2011, and soared even further in 2015 (when the Swiss National Bank unpegged it from the
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euro), the Swiss–franc borrowers were left not only with monthly installments doubled, but
also with mortgages worth more than the underlying properties. The dissatisfied borrowers
complained about being misinformed, claiming in the European Court of Justice that the
bank’s presentation ”was made in a biased manner, emphasizing the advantages (...), while
failing to point out the potential risks or the likelihood of those risks materializing.”1

The Court accentuated that ”a term under which the loan must be repaid (...) must be
understood by the consumer both at the formal and grammatical level, and also in terms
of its actual effects.”2

The issue of customer’s financial (il)literacy became central to the discussion on the
unfortunate mortgage holders. Polish data indicates the Swiss–franc borrowers were on
average relatively wealthy,3 suggesting their financial literacy might have been relatively
high. However, since the banks varied in their loan policies, there is a substantial concern
that well-informed risk-lovers were pooled with some risk-averse victims of misinformation.

The mortgage example clearly shows that even when information transmitted between
the parties must be truthful, lack of congruence between the receiver and the sender might
attenuate communication, if only the latter can manipulate the information content of his
message. Anticipating this, the receiver would not only take the strategic incentives into
consideration when interpreting the message, but might also find it worthwhile to hide his
competence, in order to enhance the informativeness of the sender’s message.

Related literature The present article contributes to the growing literature on commu-
nication with limited information processing abilities. The main reference is a model by
Dewatripont and Tirole (2005), henceforth DT, which inspired the current model. As in
their setup, I examine a sender–receiver game, in which the former tries to persuade the
latter to take some action. I modify the DT framework by adding another dimension(s) of
uncertainty, which is the complexity of the state and the sender’s message. Furthermore,
I examine how the equilibrium change with the receiver’s competence in understanding
complex messages and what are his incentives to signal his abilities.

An idea that the receiver has some intellectual, time or attention constraints appeared in
a famous model of rational inattention by Sims (2003). Glazer and Rubinstein (2004) derived
optimal mechanisms of persuading a receiver that can understand only a single argument.
Guembel and Rossetto (2009); Bucher-Koenen and Koenen (2015) define ”competence” as
the probability of a correct message, similarly to my approach. However, they examine
a cheap-talk4 communication, while I concentrate on truthful information revelation. A
close reference is therefore Persson (2017), who builds on the DT framework to examine an

1(European Court of Justice, 2017, par. 11)
2Ibid., par. 51.
3National Bank of Poland estimates franc borrowers to have 30% higher annual income and 2.5 higher level of

liquid financial assets than the mortgage holders that took a loan in Polish zloty. See National Bank od Poland
(2015)

4See Crawford and Sobel (1982)
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issue of investment in communication with several senders competing for the attention
of one receiver – or, in a similar manner – a monopolist sender communicating about
several aspects of the good. In her setup, information overload arises endogenously
as a result of the receiver’s limited attention. If the prior is favorable – i.e. if without
communication the receiver took the sender’s preferred action – experts send irrelevant
cues to prevent the receiver from discovering potentially unfavorable news. I describe a
similar equilibrium (however, in a much simpler setup) to focus further on the effect on the
receiver’s competence. I discover that ”smarter” types can end up with a worse outcome.

The result that competence can be ”harmful” appeared also in Moreno de Barreda
(2010); Ishida and Shimizu (2016); Rantakari (2016) cheap-talk models. They show that the
receiver’s access to an extra source of information – either after or before the communication
takes place – decreases informativeness of the equilibrium messages. Li and Madarász
(2008) – also within the cheap-talk framework – show that an extra information about the
conflict of interest can decrease communication. However, the mechanism of cheap-talk
games is quite different than in my model of information disclosure, where exaggeration
is not allowed. Instead of lying, the sender would flood the more competent receiver
with more noise. The models of Kessler (1998); Roesler and Szentes (2017) share a similar
story, that is, being ”too informed” may not be optimal for the receiver. Also, noiseless
communication may not be optimal for welfare (see Fishman and Hagerty (1990); Goldstein
and Leitner (2013); Blume, Board, and Kawamura (2007)).

Finally, this paper falls into broad literature of truthful, albeit not necessarily complete
information transmission. The classic unraveling mechanism, as in Milgrom (1981); Gross-
man (1981) is disturbed in my model by the presence of uncertainty about the complexity of
the state. The setup resembles the one in Shin (1994), who introduces uncertainty about the
expert’s information space. Similarly, I have uncertainty about the information complexity
required to understand the state. When such complexity and the (lack of) competence
in communication are introduced, ”uninformative” messages may look favorable. This
contrasts with the classic Milgrom (1981) result that no news is bad news.

The model also corresponds to a general class of Bayesian persuasion games, described
in the seminal paper by Kamenica and Gentzkow (2009). As in Kamenica and Gentzkow
(2009); Rayo and Segal (2010); Alonso and Câmara (2013) the sender can benefit from
non-full disclosure. The main difference between my approach and Bayesian persuasion
models is that I have no commitment on the sender’s strategy, much like in Morgan and
Stocken (2003); Dziuda (2011).
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2 Setup

The model is an augmented version of DT setup, with an additional dimension of uncer-
tainty.5 There are two players, a sender and a receiver. The receiver is going to choose
between a known status-quo that yields payoff (normalized to) 0 to both players, and some
risky action A. Action A yields a certain payoff 1 for the Sender and an uncertain payoff
that depends on the unknown state of the world ρ for the receiver. The payoff is either
ρH in state H or ρL in state L, with ρH > 0 > ρL. The prior probability of a high state is
α ∈ (0, 1).

The sender has information about the state of the world ω ∈ {H, L} which he might
communicate to the receiver. However, the information may be difficult to transmit. We can
imagine e.g. some technical information that requires some expertise to be understood. In
particular, the state could be either simple to transmit, which will be denoted by complexity
parameter n = 1 and happens with probability q or complex with n = 2 and prob. 1− q.6

After observing the state realization and its complexity, the sender decides to send a simple
or complex message to the receiver. While simple messages – if sufficient – could be
understood by any receiver, complex messages require some competence. In particular, an
announcement with complexity m = 2 could be only understood with probability x, while
with probability 1− x the receiver regards the message as noise. I shall call x the receiver’s
competence and for now assume it is observable by both parties.7

The information communicated by the sender must be truthful, but could be noisy -
in particular, the sender can exploit the receiver’s (lack of) competence by issuing ”too
complex” message. I shall assume that if the complexity of the message is smaller than
the complexity needed to understand the state (i.e. m < n), the message is perceived as
noise. But also, if a simple state is obfuscated by a complicated announcement, the receiver
would only understand it with probability x. Intuitively, simple message about a simple
state is always understood perfectly. It is crucial that the sender’s announcement does
not convey any signal about either the complexity of the state or of the message itself. In
particular, if the receiver hears noise, he cannot tell whether it was because of mismatched
complexities (m < n) or his own small competence x.

The timing of the model is as follows:

1. Nature chooses:

(a) state ω ∈ {H, L} ∼ (α, 1− α)

5The model is loosely related to the original DT setup, but closely related to the idea mentioned in footnote
(32) of Dewatripont and Tirole (2005).

6An alternative interpretation would describe n as pieces of information required to understand the state.
7I interpret competence as e.g. financial literacy, similarly to Bucher-Koenen and Koenen (2015). Thus, more

experienced financial traders simply have higher x. Another, very different idea was employed by Inderst and
Ottaviani (2012), where financial literacy was associated with customers’ level of strategic ”sophistication”. In
other words, the financial novices were considered to be naive i.e. unaware of the existing conflict of interest.
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(b) complexity of the state n ∈ {1, 2} ∼ (q, 1− q) (known by S)

(c) competence of the receiver x ∈ (0, 1);

2. The sender observes (ω, n) and chooses a truthful message of complexity m ∈ {1, 2};

3. The receiver takes action a ∈ {∅, A} .

It is crucial to notice that the sender chooses his message complexity m after learning the
state of the world (ω, n), in other words, he does not commit to his strategy ex-ante. This
is in-line with models of Morgan and Stocken (2003); Dziuda (2011) and in contrast to the
important class of Bayesian persuasion models.

Figure 1 summarizes my assumptions regarding the information available to the
receiver at each possible triple (ω, n, m). Recall that the source of noise in the message is
imperceptible from the receiver’s point of view.

There is a plethora of equilibria in the game. To limit myself to some more reasonable
cases, I shall assume that any message is in principle cheap, but complex messages are
a bit more costly to send. In particular, sending message of complexity m = 1 costs 0,
while sending message of complexity m = 2 costs c > 0. Intuitively, c is positive, but
very small8, just enough to induce a choice between strategies that would otherwise be
equally preferred by the sender. The assumption reduces the set of equilibria to those
where choosing complex messages over simple indeed has some rationale.

3 Equilibrium condition and notation

In order to establish the properties of a perfect Bayesian equilibrium of the game Γx with
known competence x, one need to specify:

• The sender’s message function σS : {H, L}×{1, 2} → {1, 2}, that for every pair (ω, n)
(i.e. state and competence needed to understand it) observed by S, defines his message
complexity m ∈ {1, 2}. For notational convenience, I shall describe the sender’s
strategy as a quadruple: ((H, 1), (H, 2), (L, 1), (L, 2)) 7→ (mH1, mH2, mL1, mL2).

• The receiver’s beliefs µ in each of his information sets (which correspond to messages
he understands) {H, L, noise}.

• the receiver’s action function, i.e. a : {H, L, noise} → {∅, A}.

Lemma 1. (trivial) In any perfect Bayesian equilibrium the receiver’s beliefs upon hearing messages
H and L are trivial, i.e. µ(ω = H|H) = µ(ω = L|L) = 1. Therefore, his optimal actions are
a(H) = A, a(L) = ∅. The only nontrivial action is:

a(noise) =

A if µ(H|noise)rH + µ(L|noise)rL ≥ 0

∅ otherwise.
8The minimal requirement is that c� 1

2 .
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Figure 1: The scheme of information transmission in the game.
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Proof. Since the revelation is truthful, upon hearing a non-noisy message the Receiver
is certain about the state, which trivially determines his optimal actions. The action
upon hearing noise is a result of Bayes rule. Since for any x < 1 and any sender’s
strategy receiving noisy message has positive probability, then for every strategy profile
(mH1, mH2, mL1, mL2) the receiver can calculate the posterior probability of the state being
H when noise was heard. Then, in any perfect Bayesian equilibrium the receiver would
take action A upon hearing noise only if according to his Bayesian beliefs: µ(H|noise)rH +

µ(L|noise)rL ≥ 0.

Lemma 2. In any perfect Bayesian equilibrium with costly complex messages, the sender’s strategy
choice must have mH1 = 1 and mL2 = 1.

Proof. Recall that the Sender chooses his actions already knowing (ω, n). In state (H, 1)
the choice of sending simple message, that would surely be understood by the receiver
and induce action A, strictly dominates the choice of complex message, that not only is
more costly, but also leaves a possibility of misunderstanding. Similarly, in state (L, 2) the
complex message is more costly and in no way can it induce a better action than the simple
(here meaning: noisy) message.

Define γα = α
1−α as the ratio of prior probabilities of states H and L. Note that γα as a

function of α is strictly increasing and define γr =
−rL
rH

, as the benchmark prior γα, that
makes the receiver indifferent between action A and the null action. Note that γα and γr

summarize the uncertainty about the state along two different dimensions – while γα is
directly related to the probability distribution, γr depends only on the payoffs. Denote
the ratio of the two parameters by γ = γα

γr
= − rHα

rL(1−α)
. Large values of γ mean that the

prior is strong (or the gain in the high state is high), while small values of γ indicate that
the prior is weak (or the punishment in the low state is substantial). The parameter γ

summarizes the gains or losses from uncertainty in the model. Observe that a priori –
absent any communication – the receiver would take action A only if γ > 1.

Theorem 1. Suppose 0 < c ≤ min(x, 1− x). There are four types of perfect Bayesian equilibria
of the game with known competence x:

1. The informative equilibrium in pure strategies, that exists whenever γ < 1
1−x :

(a) The sender’s strategy is ((H, 1), (H, 2), (L, 1), (L, 2)) 7→ (1, 2, 1, 1),.

(b) The receiver’s beliefs are µ(H|noise) = α(1−x)
1−αx , µ(L|noise) = 1−α

1−αx , µ(H|H) =

µ(L|L) = 1,

(c) The receiver’s actions are a(H) = A , a(L) = ∅ and a(noise) = ∅;

2. The noisy equilibrium in pure strategies, that exists whenever γ > 1−qx
1−q

(a) The sender’s strategy is strategy ((H, 1), (H, 2), (L, 1), (L, 2)) 7→ (1, 1, 2, 1),
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(b) The receiver’s beliefs are µ(H|noise) = α(1−q)
α(1−q)+(1−α)(1−qx) , µ(L|noise) = (1−α)(1−qx)

α(1−q)+(1−α)(1−qx) ,
µ(H|H) = µ(L|L) = 1,

(c) The receiver’s actions are a(H) = A , a(L) = ∅ and a(noise) = A;

3. The mixed semi-informative equilibrium for γ ∈
(

1
1−x , 1−qx

(1−q)(1−x

)
(a) The sender’s strategy is (1, 2, (1− r, r), 1) with r = (1−q)(γ(1−x)−1)

q(1−x) ,

(b) The receiver’s actions are a(H) = A , a(L) = ∅ and a(noise) = (A, ∅) with probabilities
(
1− c

x , c
x
)
;

4. The mixed semi-noisy equilibrium for γ ∈
(

1−qx
1−q , 1−qx

(1−q)(1−x

)
(a) The sender’s strategy is (1, (p, 1− p), 2, 1) with p = (1−γ(1−q)(1−x)−qx)

γx(1−q) ,

(b) The receiver’s actions are a(H) = A , a(L) = ∅ and a(noise) = (A, ∅) with probabilities
( c

1−x , 1− c
1−x
)
;

Corollary 2. If c > max(x, 1− x) then for γ < 1 the only equilibrium is {(1, 1, 1, 1), ∅}. For γ >

1 and x < c < (1− x) the equilibrium is a mixed–strategy profile {(1, 1, (1− r, r), 1), (b, 1− b)}
with possible corner solution r = 1 and b = 1 that is sustained for γ > 1−qx

1−q . If γ > 1 and
1− x < c < x the only equilibrium is a mixed–strategy profile {(1, (p, 1− p), 1, 1), (b, 1− b)}
with possible p = 0 and b = 0 whenever γ > 1

1−x .9

Proofs of the theorem and corollary are moved to the Appendix. In line with the
intuition about small, almost negligible cost, I shall concentrate in the rest of the paper
solely on the case of c < min(x, 1− x). The equilibria in such a case are pictured in the left
panel of Figure 2. Notice that even with costly messages, multiple equilibria still persists.
For a given pair (γ, x) either the equilibrium is unique, or there are three equilibria (two
pure, one mixed or one pure and two mixed).

To make the analysis of the competence effect more explicit, I shall impose an equilib-
rium selection rule, to enable comparative statics between unique outcomes. Since in my
model it is the sender, who possesses the information and therefore has more ”initiative”,
I shall follow the approach of Bayesian persuasion models and concentrate on sender-
optimal equilibria.10 It is not difficult to verify that in fact, the sender-best equilibrium is
the one maximizing the amount of noise.

Theorem 3. The sender-best equilibrium is:

• {(1, 1, 2, 1), a(noise) = A} for γ > 1−qx
1−q ,

• {(1, 2, 1, 1), a(noise) = ∅} for γ < min
(

1−qx
1−q , 1

1−x

)
,

• {(1, 2, (1− r, r), 1), a(noise) = (1− c
x , c

x )} for 1
1−x < γ < 1−qx

1−q .
9The case c > max(x, 1− x) is ruled out, since the minimal requirement is c < 1/2.

10Glazer and Rubinstein (2012) propose a different approach, where the receiver commits to a ”persuasion
codex”. With such an assumption, the selected equilibria would be those optimal for the receiver.
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The noisy equilibrium {(1, 1, 2, 1), A}, is preferred by the sender, whenever it can be
supported by the receiver’s beliefs. If the noisy equilibrium fails to exist, the existing
informative or mixed semi-informative equilibrium is unique, therefore, it is sender-best.
Sender-best equilibria are pictured in the right panel of Figure 2.

4 Receiver’s expected gain in the game

We may now analyze the receiver’s gain from the game and how it depends on his language
competence x. Assume 1 < γ < 1

1−q , which is the most interesting range, as depending on
x, there is a possibility of up to three different (sender-best) equilibria. Notice that for a
given γ, a higher competence may be a burden for the receiver, as it might result in a noisy
equilibrium {(1, 1, 2, 1), A}, while for somewhat lower values of x the unique equilibrium is
either informative {(1, 2, 1, 1), ∅} or semi-informative

{
(1, 2, (1− r, r), 1) ,

( c
1−x , 1− c

1−x
)}

.

Effect of competence

To see why higher types face a “competence curse”, observe that for more competent
receivers, noise might be a favorable message. Assume that the sender chooses a strategy
(1, 1, 2, 1) and the receiver anticipates it. In a state (L, 1), the receiver hears a signal that he
correctly understands as L with probability x. High values of x are a sign of competence,
therefore the receiver is ”relatively good” in identifying low state correctly with certainty.
As a result he believes noise to be less likely to arise in the low state. As m(L|noise)
is low, m(H|noise) must be relatively high, thus, the noise becomes a signal of a good
state. Competence becomes a curse – because of the receiver’s good understanding of low
states, the sender is able to ”sell” the noisy message as a favorable signal and maintain the
equilibrium in which very little information is transmitted.

More formally, let us analyze the receiver’s expected payoff:

ER
in f o eqρ(x) = (αq + α(1− q)x) ρH

ER
noisy eqρ(x) = αρH + ρL(1− α)(1− qx)

(1)

For a given equilibrium profile the receiver always benefits larger competence – as both
ER

in f o eqρ(x) and ER
noisy eqρ(x) are increasing in x. However, this is not the case when a

change in x would induce a change in the equilibrium profile.
Assume (x, γ) result in a noisy equilibrium and consider a downward change in x.

As competence decreases, m(H|noise) – which is an increasing function of x in the noisy
equilibrium – also plummets, up to a point where it is no longer profitable for the receiver
to choose A upon hearing noise and he would rather take the ∅ action instead. The sender
is then forced to switch to an informative strategy (1, 2, 1, 1) and a new equilibrium arises.
It must be noted that a switch from a noisy to informative equilibrium – as x decreases –

9



(a) All equilibria

(b) Sender-best equilibria

Figure 2: Pure (solid fill) and mixed (pattern fill) equilibria in the game for a given γ and x.
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not only increases informativeness, but brings a discontinuous jump in receiver’s utility
(see Figure 3).

Take x′ = 1
q (1− γ(1− q)) and let us analyze the expected gain/loss for an equilibrium

switch when x decreasing around a neighborhood of x′:

Er(x ↘ x′)− Er(x ↗ x′) = −αρH(1− q)x′ < 0

A marginal change in x around the threshold bring a discrete decrease in utility. Therefore,
for a small ε, two receiver types x′ + ε and x′ − ε not only end up in different equilibria,
but also the more competent receiver is strictly worse off. If it was possible, he would
rather decrease his competence to x′ − ε to induce an informative equilibrium than remain
more competent, but less informed.

Similar reasoning applies to a switch from a noisy to mixed semi-informative equilib-
rium, whenever γ is so high that the informative equilibrium no longer exists. Observe
that by a definition of a mixed equilibrium, the receiver is indifferent between his two
choices conditioned on noise, therefore:

ER
mixed(p,r,β)ρ = αρH (q + (1− q)x)

, which is of the same functional form as ER
in f o eqρ. Therefore, also a switch from a noisy to

a semi-informative mixed equilibrium brings a discontinuous loss in the receiver’s utility
and the receiver type close to the threshold would prefer to compromise some competence
in order to get a better outcome.

However, when the equilibrium is switched from an informative to mixed semi-
informative, the change in utility is continuous and the utility is increasing in x. In
fact, since the receiver’s utility in both equilibria share the same functional form, the
semi-informative equilibrium is a natural ”alternative” to an informative equilibrium,
whenever the latter cannot be sustained. Therefore, the receiver of type x ∈ [0, x′] has no
incentive to reduce his competence, even if it was possible.

Change in a prior signal

Similar reasoning applies to changes in γ. Just like with competence, having higher initial
prior does not necessarily benefit the receiver. In particular, if the receiver faces an increase
in γ, he might end up in worse equilibrium. This is quite intuitive, as more favorable prior
makes the receiver more likely to choose A, thus decreasing the sender’s incentives to
transmit information.

The prior information represented by γ and the communication competence x are
substitutes. It would be interesting – but beyond the scope of this paper – to examine a
model in which the two types of communication skills are substantially different; while
one dimension represents the stock of knowledge, the other describes the ability to absorb

11



(a) ρH = 4/3, ρL = −1, q = 0.6, α = 0.5

(b) ρH = 2, ρL = −1, q = 0.6, α = 0.5

Figure 3: Discrete change in the receiver’s expected utility and m(H|noise) when the
equilibrium changes from the informative (red) or semi-informative (red stripes) to noisy
(blue) profile.
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new knowledge. In reality, those two dimensions of informational literacy are distinct
skills.

Private information about competence

I have shown that the receiver might face a ”competence curse” – in particular, if his
competence is so high that it induces an uninformative equilibrium, the receiver might be
worse off that with somewhat lower x. However, reducing x is hardly possible.

Assume that competence becomes the receiver’s private information. To simplify,
let us consider a case in which competence may be either xL with probability π or xH

with probability 1− π and denote the equilibrium probability of type i choosing A upon
hearing noise as bi. To make things interesting, assume xL < x̄ < xH , where x̄ satisfies

1
1−x̄ = 1−qx̄

1−q
11 and the probabilities π or 1− π are sufficiently separated from 0 and 1 – so

that the two–types case does not trivially collapse to the one–type setup.
It can be shown (see: Appendix) that even though there are multiple equilibria in the

setting, as long the noisy profile {(1, 1, 2, 1), bL = 1, bH = 1} can be sustained – that is for
γ > 1−qxL

1−q – it remains the sender–best equilibrium. If γ < 1
1−xL

the unique equilibrium is
the informative one in which neither receiver type chooses A unless he is certain about the
state. The only interesting case is therefore 1

1−xL
< γ < 1−qxL

1−q . Indeed, in this range the
high type might benefit from the uncertainty. The only (therefore, sender-best) equilibrium
is {(1, 2, (1− r, r), 1), bL = c

π(1−xH)
, bH = 0} with r ∈ [0, r̄(xL)].12 Notice that the high type

is not only better off than without uncertainty about x but also his outcome is higher than
the low type’s payoff. If the sender attempts to persuade the low type, he must send at
least a semi-informative message. More competent type ”freerides” and can now enjoy the
more favorable outcome. The low type, on the other hand, enjoys the same outcome as if
he played single-handedly.

This outcome would persist if the receiver could send a cheap-talk message. Notice
that the high type would always want to send the same message as the low type, as it is in
his best interest to be pooled. If instead the types would be able to credibly certify their
types at no cost, the low type is able to separate, but has no strong incentives to do so – in
fact, he is indifferent between being certified or not.

5 Summary

In this paper, I examine a persuasion game in which the state of the world might be difficult
to transmit. The sender perfectly observes the state of the world and its complexity, i.e.
how difficult it is to understand the state. The sender then chooses a simple or a complex
message, with the latter bearing a small cost. His goal is to persuade the receiver to take

11 x̄ is a crossing point of the indifference curves that define equilibrium conditions
12More specifically, r̄(xL) =

q−xL−qxL(1−xL)
q(1−xL) .
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some action A that yields the latter an uncertain payoff. As an alternative, the receiver can
take an outside option ∅ with a payoff 0.

I show that when there is uncertainty about the complexity of information, noise is no
longer perceived purely as ”bad news”. This is because noise might come from two different
sources: exogenous complexity of information required for successful communication or
endogenous sender’s incentive to obfuscate the unfavorable state.

I concentrate on sender-best equilibria and show that there are three types of equilibrium
profiles. If the prior γ is high, the receiver is willing to choose action A upon hearing
noise and the sender can sustain his mostly preferred noisy equilibrium in which little
information is transmitted. If γ is small, the receiver is more wary and the sender’s best
option is to send as much information as possible and refrain from issuing extra noise.
Depending on (γ, x), this leads to either an informative or a semi-informative equilibrium.
The surprising result, however, is that for a given γ more competent receiver types might
end up in the worse, noisy equilibrium than somewhat smaller types, who are guaranteed
to end up in the informative outcome. The competence becomes a curse.

To understand the result, suppose the sender tries to ’sell’ noise as a good signal and
issue intentionally complex messages. Since information revelation must be truthful, the
announcements are sometimes correctly understood – more often, if the receiver is more
competent. As a result, upon hearing noise the high type would attach less likelihood to
the state being low than high. Thus, noise becomes a favorable message and the sender has
no incentive to transmit any information. This equilibrium cannot be sustained for a less
competent receiver, precisely because of his little understanding of the complex messages.
The incompetent type is warier and unwilling to choose A upon hearing noise. Therefore,
the sender has no choice, but to persuade him with an informative announcement.

In a comparative statics exercise I show that the utility loss associated with an equilib-
rium change is discrete and negative – in other words, the smart receiver would have a
strong incentive to ”play dumb”. While in the standard setup, this is not possible, I also
examine a game in which the sender is uncertain about the receiver’s competence, which
might be either high or low. I show that for a relevant range of γ the competent receiver
strictly benefits from extra uncertainty, as he now ends up in the unique semi-informative
outcome. The low type’s outcome is the same, so he has no strict incentive to disturb the
pooling equilibrium.
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Appendix

Proof of theorem 1

Proof. I shall analyze which strategy profiles might arise in an equilibrium. By Lemma
2, there are only four feasible strategies of the sender: (1, 1, 1, 1), (1, 2, 1, 1),(1, 1, 2, 1),
(1, 2, 2, 1). Notice also that in any perfect Bayesian equilibrium the receiver’s beliefs must
be consistent with the sender’s strategy. Let us assume c < min(x, 1− x), which means
there is at least some incentive to invest in costly message. Examine four cases:

1. The sender uses strategy (1, 1, 1, 1). Such strategy is consistent with the receiver’s
beliefs µ(H|noise) = α and µ(L|noise) = 1− α. Assume that the receiver chooses
a(noise) = A. The sender might benefit from deviating to (1, 1, 2, 1) , generating
noise with positive probability Assume the receiver takes an action ∅ when hearing
noise. The sender can benefit from deviating to (1, 2, 1, 1) , i.e. more informative
message. Thus strategy (1, 1, 1, 1) is never optimal.

2. The sender uses strategy (1, 2, 1, 1) . This strategy is consistent with the receiver’s
beliefs µ(H|noise) = α(1−x)

1−αx and µ(L|noise) = 1−α
1−αx . Assume the receiver takes A

when hearing noise. Then the sender has an incentive to deviate to a more noisy
message (1, 2, 2, 1) . In the other case, when the receiver takes ∅ upon hearing noise,
there is no incentive to deviate. The appropriate beliefs imply γ < 1

(1−x) and in such
a case the strategies {(1, 2, 1, 1), a(noise) = ∅} constitute an equilibrium.

3. The sender uses strategy (1, 1, 2, 1) . Upon hearing noise the receiver would take
action A if γ ≥ 1−qx

1−q and ∅ otherwise. In the latter case, i.e. a(noise) = ∅, the
sender has an incentive to deviate from costly (1, 1, 2, 1) to less costly (1, 1, 1, 1) . If
a(noise) = A, there is no incentive to deviate and the profile {(1, 1, 2, 1), a(noise) =
A} constitutes an equilibrium when γ ≥ 1−qx

1−q .

4. The sender uses strategy (1, 2, 2, 1). Upon hearing noise the receiver would take
action A if γ ≥ 1−qx

(1−q)(1−x) and ∅ otherwise. If a(noise) = A the sender has an
incentive to deviate from more costly (1, 2, 2, 1) to less costly (1, 1, 2, 1) . In the second
case, when a(noise) = ∅, the sender has an incentive to deviate from costly (1, 2, 2, 1)
to less costly (1, 2, 1, 1) . Thus, (1, 2, 2, 1) is not used in any equilibrium.

Notice that the analysis above could be also performed taking purely interim point of view,
i.e. analyzing just the actual choice in critical states (H, 2) and (L, 1) . This approach would
be used to examine mixed strategies. Since the choice is made after the state is realized,
the choices of mH2 and mL1 are interdependent only through the beliefs they induce in the
equilibrium. The mixing could be an arbitrary (1, (p, 1− p), (1− r, r), 1) . In any mixed
equilibrium in which at least one of p, r is interior, the receiver must be indifferent between
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choosing A and ∅, therefore p, r must satisfy:

γ =
qr(1− x) + (1− q)
(1− q)(1− x + px)

. (2)

The receiver’s response is (b, 1− b) where b = P(a(noise) = A) .
Assume the receiver plays according to a strategy (b, 1− b) with b ∈ (0, 1) . Consider

the state (H, 2) and the sender’s choice of (p, 1− p) that costs c(1− p) . Notice that the
sender’s payoff is linear in p.

E(payoff in(H, 2)) = (−x(1− b) + c)p + α(1− q)(x + (1− x)b− c) (3)

If b = 1− c
x then the sender’s choice of p could be arbitrary, as the payoff is constant in

p. If, b < 1− c
x then the sender finds it optimal to choose p = 0 and if b > 1− c

x then the
optimal choice is p = 1.

A similar reasoning applies to changes in r, when the state is (L, 1) The strategy (1− r, r)
costs cr and any incremental change in r results in a change in utility:

E(payoff in(L, 1)) = ((1− x)b− c)r (4)

Notice that generically for a given pair (c, x) it cannot simultaneously hold that b = 1− c
x

and b = c
1−x as long as c 6= x(1 − x). Therefore, at most one of (3) and (4) can be

independent of p or r and allow for an interior choice of the parameter. Therefore mixing
would be performed only in one of the critical states (H, 2) and (L, 1) . In the other state,
the incentives would drive the receiver to choose a corner solution from a set {0, 1}. This
is quite clear if we observe that the sender’s decision is indeed a linear programming
problem.

The first type of mixed equilibrium is of the form {(1, (p, 1 − p), 2, 1), (b1, 1 − b1)}
with b1 = 1− c

x and exists whenever 1−qx
1−q ≤ γ ≤ 1−qx

(1−q)(1−x) . Notice that for small c, the
probability of the receiver taking action upon hearing noise is close to 1, therefore this
equilibrium is relatively noisy We shall call it a semi-noisy mixed equilibrium.

The second type of mixed equilibrium is of the form {(1, 2, (1− r, r), 1), (b2, 1− b2)}
with b2 = c

1−x and exists whenever 1
(1−x) ≤ γ ≤ 1−qx

(1−q)(1−x) . Whenever c is small, b2 is
close to zero. Therefore this equilibrium would be labeled as a semi-informative mixed
equilibrium.

In any mixed equilibrium, the condition (2) must be satisfied, thus the mixed equilibria
can be sustained only within some subset of the (x, γ)-space.

In the unlikely case of c = x(1− x), the equilibrium is {(1, (p, 1− p), (1− r, r), 1), (x, 1−
x)}. In this equilibrium the probability of the receiver accepting the action A is exactly
equal to his competence.
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Proof of corollary 2

Proof. The result in a corollary follows naturally from the proof above. For c > 1− x the
sender does never have an incentive to choose any r but 0, as is clear from his payoff
characterization in (2.4). A strategy profile (1, (p, 1− p), 1, 1) could be supported as long
as γ satisfies (2.2) for some p ∈ [0, 1 ], which implies 1 ≤ γ ≤ 1

(1−x+px) . For γ < 1 the
equilibrium is {(1, 2, 1, 1), A} and for γ > 1/(1− x) it must be {(1, 1, 1, 1), ∅}. For c > x the
sender with incentives like in (2.3) must choose p = 1. A mixed strategy (1, 1, (1− r, r), 1)
is feasible as long as 1 ≤ γ ≤ 1−qx

1−q . For γ < 1 the equilibrium is {(1, 1, 1, 1), ∅} and for
γ > (1− qx)/(1− q) it must be {(1, 1, 2, 1), A}.

Proof of theorem 3

Proof. This result is quite intuitive, but I will prove it formally Notice that the sender’s
payoff from an arbitrary pure or mixed strategy of the general form {(1, (p, 1− p), (1−
r, r), 1) , (b, 1− b)} is:

EuS(eq. profile) = αq + α(1− q)[(1− p)(x + (1− x)b) + pb]+

+ (1− α)qr(1− x)b + (1− α)(1− q)b− c(α(1− q)(1− p) + r(1− α)q).

The mixed strategy payoff is quite easy to derive. For mixed equilibria, recall that
by the definition of equilibrium b, the payoff must be independent of p in a semi-noisy
equilibrium and of r in the semi-informative equilibrium.

EuS(info eq.) = αq + α(1− q)(x− c),

EuS(noisy eq.) = α + (1− α)((1− qx)− cq),

EuS(semi-info eq.) = αq + α(1− q)[x + (1− x)b− c] + (1− α)(1− q)b,

EuS(semi-noisy eq.) = αq + α(1− q)[x + (1− x)b− c] + (1− α)[q((1− x)b− c) + (1− q)b].

It is clear that EuS(noisy eq.) > EuS(info eq.) as x− c < x + c < 1 for c < min(x, 1− x)
. Notice also that the mixed profiles are increasing in b, therefore:

EuS(semi-noisy eq.) < αq + α(1− q)(1− c) + (1− α)(1− qx− qc) < EuS(noisy eq)

EuS(semi-info eq.) < αq + α(1− q)(1− c) + (1− α)(1− q) < EuS(noisy eq)

Therefore EuS(noisy eq.) dominates all other payoffs.

Equilibria in the game with two receiver types

As an additional comment, I shall describe the equilibria in the game of one sender playing
against a receiver of uncertain competence that is either xL with probability π or xH with
probability 1− π.
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The receiver of type i chooses a strategy (bi, 1− bi) with bi ∈ [0, 1 ]. The sender plays a
profile (1, (p, 1− p), (1− r, r), 1) that also incorporates pure strategies.

The sender chooses his actions after learning the state, so again, we will consider his
choices in the crucial states (H, 2) and (L, 1) . In the high and complex state, he would
prefer to send a complex message than a simple if:

πxL(1− bL) + (1− π)xH(1− bH) ≥ c (5)

In (L, 1) the complex message is preferred as long as:

π(1− xL)bL + (1− π)(1− xH)bH ≥ c (6)

Denote f (p, r, x) = qr(1−xi)+1−q
(1−q)(1−xi+pxi)

. The receiver chooses bi = 0 if γ < f (p, r, xi) , bi = 1
if γ > f (p, r, xi) and bi ∈ (0, 1) if γ = f (p, r, xi) . Notice that f (p, r, x) is generically not
constant, so typically at most one xi may satisfy f (p, r, xi) = γ, and thus have bi ∈ (0, 1) .
This leaves us with eight possible cases:

• bL = 0, bH = 0. The sender’s strategy must be (1, 2, 1, 1) and γ < 1
1−xH

;

• bL = 0, bH ∈ (0, 1). Then bH = c
(1−π)(1−xH)

and the sender responds with (1, 2, (1−

r, r), 1) which can be sustained if γ = qr(1−xH)+1−q
(1−q)(1−xH)

. But f (p, r, x) increasing, so it
can’t be that γ ≥ f (p, r, xL), that is required for bL = 0. Such an equilibrium does
not exist.

• bL = 0, bH = 1. Then (1, 2, 2, 1) , but we can’t have γ ≤ 1−qxH
(1−q)(1−xH)

and γ ≥
1−qxH

(1−q)(1−xH)
, as f (p, r, x) increasing. Again, not feasible.

• bL ∈ (0, 1), bH = 0. Then bL = C
π(1−xH)

, the sender responds with (1, 2, (1− r, r), 1)

and γ = qr(1−xL)+(1−q)
(1−q)(1−xL)

< qr(1−xH)+(1−q)
(1−q)(1−xH)

.

• bL ∈ (0, 1), bH = 1. Then bL = 1− c
πxL

, the sender responds with (1, (p, 1− p), 2, 1)

and γ = 1−qxL
(1−q)(1−xL+pxL)

> 1−qxH
(1−q)(1−xH+pxH)

, which might be sustained only if p >

1− q;

• bL = 1, bH = 0. Then the sender responds with (1, 2, 2, 1) and now it’s possible that
1−qxH

(1−q)(1−xH)
> γ > 1−qxL

(1−q)(1−xL)
.

• bL = 1, bH ∈ (0, 1) . Then bH = 1− c
(1−π)xH

and (1, (p, 1− p), 2, 1) 1−qxH
(1−q)(1−xH+pxH)

=

γ > 1−qxL
(1−q)(1−xL+pxL)

and must be p < 1− q;

• bL = 1, bH = 1. The sender chooses (1, 1, 2, 1) and γ > 1−qxL
(1−q) > 1−qxH

(1−q) ;

For a given γ, a few equilibria might coexist. However, as is clear from the proof of theorem
3 above, whenever the noisy equilibrium exists, it dominated (from the sender’s point of
view) all other possibilities. This leaves us with only three sender-best equilibria:
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• {(1, 1, 2, 1), bL = 1, bH = 1} whenever γ > 1−qxL
(1−q) ;

• {(1, 2, (1 − r, r), 1), bL = c
π(1−xH)

, bH = 0} whenever 1
1−xL

< γ < 1−qxL
(1−q) with

r = (1−q)(γ(1−x)−1)
q(1−x) ;

• {(1, 2, 1, 1), bL = 0, bH = 0} whenever γ < 1
1−xL

;

Notice that those equilibria are the same as if the sender has played only against a low-type
receiver. The low-type receiver obtains exactly the same outcome as in a game without the
presence of a high type. However, xH’s payoff is substantially different. By being pooled
with the low type in an informative (or semi-informative) equilibrium, the competent re-
ceiver is able to avoid being lured into a noisy equilibrium.
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